

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2017
Lab 02 – Basic Debugging

Assignment: Lab 02 – Basic Debugging
Due Date: During discussion, February 6th through February 9th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

In Lab 1, we logged onto GL and set up folders for 201 in your home

directory. We also created a simple Python program, and turned it in using
the submit command. We’ll be using many of these skills in this lab as well.

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Prior Assignments

Before going to Lab 02, you should have completed and understood both Lab
1 and Homework 0. You should have already created directories for your 201
files, including the main 201 folder, directories called Labs and Homeworks,
and directories inside those with appropriate names (e.g., hw0, lab1, etc.).

Part 1B: Review – Commands in GL

You should already know a number of commands that you can use in GL’s
command line (the “terminal”) from the previous assignments. We will briefly
cover those, and will introduce a few other useful commands as well. You are
not expected to master all of these, or to do so immediately — we are simply
reminding you that these tools exist.

Command Purpose and Example Usage
cd Change your current directory

Usage: cd lab2 to move to the lab2 directory

(Use cd .. to move up one directory; use cd alone to go

back to your home directory)
ls List the contents of the current directory
mkdir Create a new directory

Usage: mkdir lab2 to make a new lab2 directory if it

doesn’t already exist
mv Rename a file (i.e., “move” the file to a new name)

Usage: mv oldName.py newName.py will rename the file

from oldName.py to newName.py
Can also be used to rename directories

pwd Print the full path of the “working” (current) directory
submit Allows you to submit assignments over GL

Usage: submit cs201 HW1 hw1.txt submits the file

hw1.txt to the HW1 assignment for the cs201 class

All of the commands above you’ve seen before. Here are some new
commands that you might not have used yet, but that can be very helpful.

CMSC 201 – Computer Science I for Majors Page 3

Command Purpose and Example Usage
cp Create a copy of an existing file

Usage: cp existingFile.txt newFileName.txt will

create a copy of the existing file, and name the copy
“newFileName.txt”

clear “Clears” your screen by shifting your previous commands and
output upward; you can still scroll up using the mouse or
scrollbar

“TAB” Hitting the tab key will autocomplete based on the available
file or directory names. For example, typing “emacs la” and

hitting tab will autocomplete “la” to “lab2.py” if the file

exists
“up arrow” Hitting the up arrow will recall your previous command to the

terminal. Hitting it again will pull up the command before that
one; repeat as necessary.
You can also use the down arrow to go “back” a command if
you go too far in your command “history.”

There are many more useful commands that you can use in GL, and we’ll
mention them as they come up during the semester. If you see your TA or
instructor using a command or shortcut that you don’t know and would like to
be able to use, ask them to explain it to you!

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Shortcuts for emacs

Finally, let’s cover some basic emacs shortcuts. Again, you will already know
some of these from doing previous assignments, but some of them will also
be new to you. You do not “need” to know any of them beyond the first two
(how to save your file and how to exit emacs), but mastering a few more will
make your programming experience more enjoyable.

Command Meaning
CTRL+X, CTRL+S Save the file and stay in emacs
CTRL+X, CTRL+C Save the files and close emacs
CTRL+_ Undo your last edit; use it again to undo the previous

one as well
(Control + Shift + “-” to create an underscore)

CTRL+K Cut everything on the line after the cursor (“kill”)
CTRL+Y Paste the text cut by the CTRL+K command (“yank”)
CTRL+A Go to the beginning of the current line
CTRL+E Go to the end of the current line

CMSC 201 – Computer Science I for Majors Page 5

Part 2: Exercise: Programming from Scratch

As we’ve discussed in class, testing and debugging your programs is a large
part of being a successful programmer. Sometimes, you may even have to
debug other people’s code!

In this lab, we’ll be creating two files: lab2.py will be a file you create, and

errors.py will be a file you copy into your directory, before finding and

fixing the errors it contains. Both files will be counted as part of the grade for
Lab 2.

In this lab, you’ll learn how to copy files into your account from an instructor’s
directory, and you’ll write your first complete Python program.

Tasks

 Download the .emacs file

 Create a lab2.py file from scratch

 Fix any errors in the lab2.py file

 Download the errors.py file

 Fix all of the problems and bugs in the errors.py file

 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 6

Part 3A: Downloading the .emacs File

The first thing you’ll do is download a file that will configure the emacs editor
we’ll be using, to customize the way the emacs program behaves. While in
your home directory, copy the .emacs file into your current folder by using

the cp command below (cp simply stands for “copy”).

 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/.emacs .

There are three parts to the command, and all three are important:

1. “cp” is the command, and in this case it stands for copy

2. “afs/umbc.edu/users/k/k/k38/pub/cs201/.emacs” is

where the file you are copying is located
3. “.” (a single period) is where the file will be copied to

(The period means it will be copied to the current folder, and will keep
the same filename.)

The period “.” in front of the file name indicates the file is a hidden file. If you

simply type ls, you won’t see it listed. To double check that you

successfully copied the file, you need to use the command “ls -a”. The

 -a means “all” and will show all the files in that directory, even hidden

ones.

CMSC 201 – Computer Science I for Majors Page 7

Part 3B: Creating a File from Scratch

Next, you are going to create your first complete Python file, entirely from
scratch. First, create the lab2 folder using the mkdir command -- the

folder needs to be inside your Labs folder as well. (For a reminder of how

to create and navigate folders, refer to the instructions for Lab 1.)

Next, create a file called lab2.py by opening it up for editing with emacs:

 emacs lab2.py

You’ll want to reproduce all of the text below inside your lab2.py file,

making sure to include all of the “#” signs, and to follow the capitalization

shown.

(This is an image, so you’ll need to re-type it by hand.)

Quick note about collaboration in labs: because you are working with the
other students in your lab section, we do not require that you fill out the
Collaboration Log for collaboration that occurs during a discussion. You
should still not copy code, and you should not type on another student’s
keyboard. You should also never email another student any code (from a
lab or a homework assignment) for any reason.

CMSC 201 – Computer Science I for Majors Page 8

Part 3C: About the Header Comment

The pound symbols “#” you have in the lab2.py file are used to tell Python

that any text on that line after the pound sign is a comment. Comments are
ignored by Python, and the text following a pound sign does not need to
follow any of Python’s syntax rules. Comments are useful for the person
reading the code (you, your TA, your instructor, etc.).

Programmers use comments to explain what the code is doing, to leave notes
to themselves, and to document things about the code. For example, the
comments at the top of the file are called a “header comment block,” and
record who created the file, when, and what the file is supposed to do.

We’ll talk more about comments throughout the semester, since they are an
incredibly important part of programming and being a good programmer.

CMSC 201 – Computer Science I for Majors Page 9

Part 4: Exercise: Finding and Fixing Errors
In this part of the lab, you’ll be working on a Python file full of errors. We’ll
first explain how to find them, and how to understand the error messages.
Following that, you’ll solve the errors on your own.

Part 5A: Running the lab2.py File
First, let’s try running the lab2.py file you have created. Save your file and
exit emacs. Before running your program, make sure you enable Python 3:
 scl enable python33 bash

You’ll know that Python 3 was successfully enabled if the prompt in the
command line changes from something like “linux1[13]%” to

“bash-4.1$”. You must enable Python 3 before you run your program, but

you only need to do it once per time you log on to GL. Other commands (like
ls, submit, and emacs) will still work when Python 3 is enabled.

Go ahead and run your program by using the python command:

 python lab2.py

If you copied everything exactly, your program won’t run — instead, you’ll get
an error message.

CMSC 201 – Computer Science I for Majors Page 10

Part 5B: Reading Error Messages

Your error message should look something like this:

linux3[11]% scl enable python33 bash

bash-4.1$ python test.py

 File "test.py", line 12

 print("Hello, my name is YOUR_NAME)

 ^

SyntaxError: EOL while scanning string literal

bash-4.1$ █

There are a couple key pieces of information in this error message:

1. We are told the name of the file, and the line where the error occurred
In this case, it’s our lab2.py file, and the error is on line 12

2. Python has attempted to pinpoint the error even further for us, using
the “^” symbol you can see on the second-to-last line

3. Python has told us what kind of error it is, and some details:
a. It is a syntax error
b. Python reached EOL (End of Line)
c. While scanning a “string literal”

Python won’t be able to spot logical errors for you, but it tends to be very
good at pinpointing syntax errors. However, it sometimes won’t notice an
error has occurred until a few lines after the actual error. If you don’t see
anything wrong with the line Python has indicated, try looking at the lines
directly before it for anything odd.

(Think about it like this: if you made a wrong turn while driving, you might not
notice your mistake until you came to an unexpected dead end. But the dead
end itself is not the error — it’s one of the turns you took before that.)

CMSC 201 – Computer Science I for Majors Page 11

Part 5C: Fixing an Error

Hopefully you’ve spotted the error already – the print() statement is

missing the closing quotation marks. To fix it, we’ll need to open lab2.py

again for editing.

Once you do that, take a look at the bottom of the screen, and you should
see something like this:

-UUU:----F1 lab2.py All L1 (Python)----------

The “L1” you see there (second from the right) stands for “Line 1” – the error

was on line 12, so move your cursor down until you’ve reached “L12” instead.

Fix the error by adding the closing quotation mark, and save and exit again.

Try running your program again – if you fixed the error correctly, it should run
without any errors, and display the greeting you wrote.

If it doesn’t work, use what you’ve learned to find the “next” error and fix it.
Python often will only display the first error it finds, so you may find yourself
having to do this multiple times when working on your assignments as well.

(If there is more than one error, start with the message at the bottom first. Fix
that one error, and then try to run your program again.)

CMSC 201 – Computer Science I for Majors Page 12

Part 5D: Applying Your Debugging Skills

Now it’s time to put your bug fixing abilities to the test! Copy a file called
errors.py into your lab2 folder using the cp command. (Don’t forget

to include the period at the end of the command!)

 cp /afs/umbc.edu/users/k/k/k38/pub/cs201/errors.py .

Before you jump into trying to fix the bugs, take a moment to read the code
and figure out what the program should be doing. Then use your new
knowledge of finding and fixing bugs to update the errors.py file to run

without any errors.

Part 5D: Testing Your Fixes
Test your fixed errors.py Python program with different inputs to ensure

that it runs correctly. Make sure you have enabled Python 3 before testing:
 scl enable python33 bash

If your testing finds a bug, fix it, and try running the program again.

(HINT: Try testing out the program with the numbers 5, 6, and 7 as input.
What average does your program calculate? What is the correct answer?)

Once errors.py is fixed, add two lines to the file’s header comment block.
 # Fixed by: YOUR_NAME (YOUR_EMAIL@umbc.edu)

 # Date fixed: TODAYS_DATE

The headers of your files (the block of comments at the top) are very
important. Double check that you have correctly completed the headers for
the errors.py and lab2.py files.

CMSC 201 – Computer Science I for Majors Page 13

Part 6: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

As a reminder, here are the tasks again:
 Download the .emacs file

 Create a lab2.py file from scratch

 Fix any errors in the lab2.py file

 Download the errors.py file

 Fix all of the problems and bugs in the errors.py file

 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

